Stampa E-mail
Master universitario di II livello in Scienze e tecnologie degli impianti nucleari

Organizzazione didattica e contenuti del Master

Il Master si articola in 402 ore di didattica frontale, 400 ore di stage e 69 ore di project work.

L’attività formativa è articolata in:
- didattica frontale: lezioni di docenti universitari, esperti aziendali e testimoni qualificati;
- studio guidato: esercitazioni pratiche consistenti, di volta in volta, nello sviluppo di casi aziendali o di simulazioni sul campo;
- didattica interattiva: lezioni-dibattito svolte da docenti ed esperti aziendali e conseguente dibattito con i partecipanti.

Le attività di aula saranno ripartite su cinque giorni a settimana.

Al termine della fase d'aula è previsto il periodo di stage e l'elaborazione del project work.

Moduli

Introduction to nuclear energy

  • Introduction to Nuclear Energy (I)
  • Current generation reactors: PWR, PHWR, VVER, BWR, FBR
  • Passive and inherent safety features
  • Advanced reactors: AP1000, EPR, ESBWR
  • ADS, & Generation IV Reactors
  • Approach to NPP Design–Old/New Generation

Mathematical Methods

  • Partial differential equations
  • Laplace, Fourier  transforms
  • Navier-Stokes equation

Thermal-Fluid-Dynamics  and phenomenology

  • Elements of thermodynamic
  • Single-phase flow
  • Two phase flow
  • Heat transfer and CHF
  • Thermal hydraulic instabilities
  • Two-phase flow regimes
  • Pressure drop, Critical flow, Condensation & evaporation
  • Basic models of two phase flow
  • Numerical methods & CFD

Reactor Physics

  • Nuclear Physics
  • Radioactivity & Doses
  • Neutron Physics
  • Elements of Reactor Kinetics
  • Elements of Reactor Physics
  • Basics of fuel cycle
  • Design and analysis of nuclear reactor core
  • Time dependent and steady state analysis
  • Introduction to neutron transport and diffusion theories, multigroup methods
  • Montecarlo applications
  • Fast and thermal spectrum calculation
  • Poisons and fuel depletion
  • Sub-critical systems

Structural Mechanics & FEM

  • Principles of structural engineering
  • Introduction to models for static and dynamic analyses
  • Finite Element Method
  • Theory
  • Static analysis
  • Temperature distribution analysis
  • Transient analysis and fatigue
  • Dynamic analysis
  • Main components (RPV, SG, PRZ, PP,…)
  • Strength of materials
  • Design codes (ASME)
  • High temperature design
  • Design specification and design report
  • Fracture mechanics
  • Material issues in nuclear industry (activation, embrittlement, corrosion, etc.)
  • Welding
  • Non-destructive examination
  • In-Service-Inspection
  • Quality Control
  • Piping loads and analysis, supports

Nuclear Plant Safety, Standards & Requirements Company processes

  • Safety sub-module
  • Design Basis and sever accidents
  • LBLOCA & SBLOCA - phenomenolgy
  • Safety basic concepts
  • Deterministic & uncertainty approach
  • Defense  in depth, safety function & protection systems
  • Engineeriug Safety Features
  • Reactor safety analysis
  • Reliability & Risk analyses
  • Reliability theory
  • Quality system management
  • Lessons learned: TMI, Chernobyl, Fukushima

Static/Rotating component design – process design

  • Compressors, pumps, valves, heat exchangers, steam generators, HVAC, conversion, turbine
  • Process design
  • Instrumentation
Layout of a NPP
  • Criteria governing Lay-out
  • Space management
  • Integrated approach
  • Constraints governing lay-out

Control Theory for NPP Functional Analysis

  • Reactor control
  • Bode, Nyquist diagrams
  • Turbine follow / Reactor follow

Civil Engineering & Seismic analysis

  • Loads
  • Codes & Regulations
  • Calculation Methods
  • Modular construction
  • Aircraft crash
  • Lay-out studies & tools
  • Seismics & analysis
  • Evaluation of structural response
  • Modal analysis
  • Structural damping
  • Sloshing
  • Codes & Regulations

Informatics

  • The LINUX operating system (shell, commands, scripts)
  • Fortran

Radioactivity, radiation & Instrumentation

  • Radiation sources, effects, doses and allowable exposure limits
  • Radiation sources in NPP and protection strategies
  • Shields design and dose evaluation tools
  • The ALARA design approach
  • Radiation detection
  • Radiation monitoring system
  • Radioactive waste characterization
  • Nuclear plant instrumentation
  • Reactor control and instrumentation
  • Protection system measurements
  • Reactor monitoring system

Waste Management & Decommissioning

  • Radioactive waste sources, categories, treatment and disposal methods
  • Intermediate and final repositories
  • Decommissioning of nuclear installations
  • Water treatment conditioning technologies
Stage

Al termine dell’attività d’aula saranno organizzate attività di tirocinio presso aziende partner e promotrici del progetto in favore dei partecipanti che non siano già inseriti nel mondo del lavoro. Lo stage permetterà agli studenti un primo ingresso nel mondo del lavoro attraverso progetti formativi mirati e concordati con i soggetti ospitanti.
Per gli iscritti già inseriti nel mondo del lavoro potrà essere concordato un progetto formativo di stage aziendale presso l’azienda di appartenenza.

Project work

Al termine del Master i partecipanti sono chiamati a redigere un project work finale; gli argomenti saranno individuati dai partecipanti insieme ai docenti, in relazione ai principali temi sviluppati durante il Master e/o in funzione del tirocinio svolto. Il project work, la cui elaborazione darà l’opportunità di mettere a frutto l’insegnamento ricevuto durante il Master, sarà discusso durante l’esame finale dinanzi ad una commissione composta da docenti del Master.